WiP: Towards Formal Specification of Attestation Frameworks for Confidential Computing

Muhammad Usama Sardar¹, Thomas Fossati², Hannes Tschofenig³ and Simon Frost⁴

¹TU Dresden, Germany

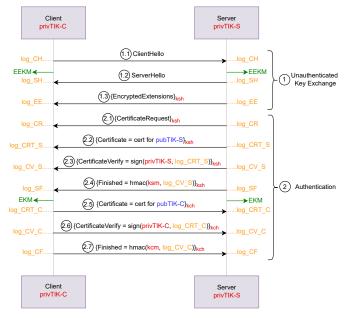
²Linaro, Lausanne, Switzerland

³University of Applied Sciences Bonn-Rhein-Sieg and Siemens, Germany

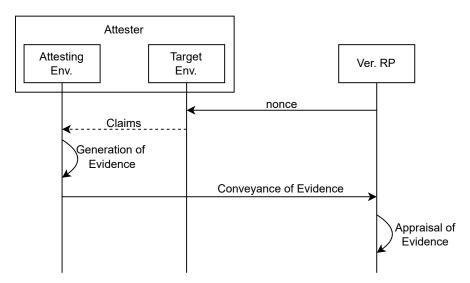
⁴Arm, Cambridge, UK

November 2, 2024

Outline



2 Proposal


 $1 \, / \, 11$

Network Security: TLS

Muhammad Usama Sardar (TUD)

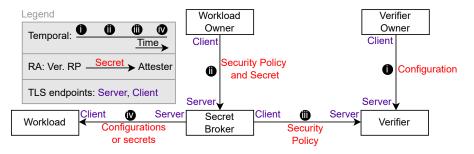
Endpoint Security: Remote Attestation for CC

Motivation

Single-Stepping and Instruction Counting Attacks against Intel TDX

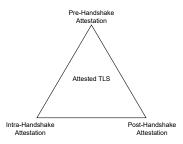
TDXdown presents two attacks on TDX's single-stepping countermeasure and uses them to recover ECDSA keys via a new weakness in nonce generation of OpenSSL and wolfSSL.

Outline

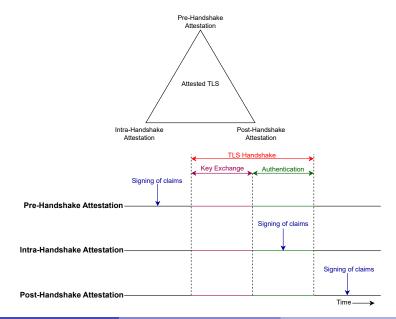

Background

2 Proposal

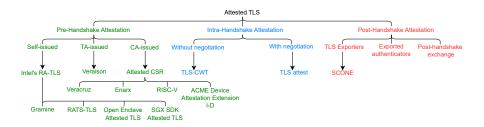
- System Architecture-Level Specification
- Network Protocol-Level Specification



Proposed Generic Architecture


• Stages i and ii are unspecified for all solutions!

Design Options


7/11

Design Options

Muhammad Usama Sardar (TUD)

Design Space for Attested TLS

8/11

(Typical) Comparison/Tradeoffs

Property	Pre-handshake	Intra-handshake	Post-handshake
Modification	TA/CA	TLS	Application
Replay protection	×	\checkmark	Possible
Impact on connection	Medium $(t_{hs} + t_a)$	$High\;(t_{hs}+t_g+t_a)$	Low (t _{hs})
establishment latency			
Effective connection	Low	Low	High (≥0.5RTT)
establishment latency			

- t_{hs} = Time for TLS handshake (without attestation)
- t_g = Time for generation of evidence
- t_a = Time for appraisal of evidence
- WiP
 - Usability/Ease of use
 - Complexity of implementation/formal verification
- Discussion: any other property?

Outline

Background

) Proposa

- System Architecture-Level Specification
- Network Protocol-Level Specification

• Design choices: pre-/intra-/post- HS attestation

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs
- Underspecified = NOT trustworthy!

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs
- Underspecified = NOT trustworthy!
- The process of formal specification (even without verification) is very valuable!

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs
- Underspecified = NOT trustworthy!
- The process of formal specification (even without verification) is very valuable!
- Open Questions

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs
- Underspecified = NOT trustworthy!
- The process of formal specification (even without verification) is very valuable!
- Open Questions
 - How to efficiently and automatically verify underspecified systems?

- Design choices: pre-/intra-/post- HS attestation
- Interlink between arch. specs and protocol specs
- Underspecified = NOT trustworthy!
- The process of formal specification (even without verification) is very valuable!
- Open Questions
 - How to efficiently and automatically verify underspecified systems?
 - How to discover missing specs automatically?